00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020 #include "avcodec.h"
00021 #include "get_bits.h"
00022 #include "put_bits.h"
00023 #include "bytestream.h"
00024 #include "adpcm.h"
00025 #include "adpcm_data.h"
00026
00059
00060 static const int xa_adpcm_table[5][2] = {
00061 { 0, 0 },
00062 { 60, 0 },
00063 { 115, -52 },
00064 { 98, -55 },
00065 { 122, -60 }
00066 };
00067
00068 static const int ea_adpcm_table[] = {
00069 0, 240, 460, 392,
00070 0, 0, -208, -220,
00071 0, 1, 3, 4,
00072 7, 8, 10, 11,
00073 0, -1, -3, -4
00074 };
00075
00076
00077 static const int swf_index_tables[4][16] = {
00078 { -1, 2 },
00079 { -1, -1, 2, 4 },
00080 { -1, -1, -1, -1, 2, 4, 6, 8 },
00081 { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
00082 };
00083
00084
00085
00086 typedef struct ADPCMDecodeContext {
00087 AVFrame frame;
00088 ADPCMChannelStatus status[6];
00089 } ADPCMDecodeContext;
00090
00091 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
00092 {
00093 ADPCMDecodeContext *c = avctx->priv_data;
00094 unsigned int min_channels = 1;
00095 unsigned int max_channels = 2;
00096
00097 switch(avctx->codec->id) {
00098 case CODEC_ID_ADPCM_EA:
00099 min_channels = 2;
00100 break;
00101 case CODEC_ID_ADPCM_EA_R1:
00102 case CODEC_ID_ADPCM_EA_R2:
00103 case CODEC_ID_ADPCM_EA_R3:
00104 case CODEC_ID_ADPCM_EA_XAS:
00105 max_channels = 6;
00106 break;
00107 }
00108 if (avctx->channels < min_channels || avctx->channels > max_channels) {
00109 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
00110 return AVERROR(EINVAL);
00111 }
00112
00113 switch(avctx->codec->id) {
00114 case CODEC_ID_ADPCM_CT:
00115 c->status[0].step = c->status[1].step = 511;
00116 break;
00117 case CODEC_ID_ADPCM_IMA_WAV:
00118 if (avctx->bits_per_coded_sample != 4) {
00119 av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
00120 return -1;
00121 }
00122 break;
00123 case CODEC_ID_ADPCM_IMA_WS:
00124 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
00125 c->status[0].predictor = AV_RL32(avctx->extradata);
00126 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
00127 }
00128 break;
00129 default:
00130 break;
00131 }
00132 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
00133
00134 avcodec_get_frame_defaults(&c->frame);
00135 avctx->coded_frame = &c->frame;
00136
00137 return 0;
00138 }
00139
00140 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
00141 {
00142 int step_index;
00143 int predictor;
00144 int sign, delta, diff, step;
00145
00146 step = ff_adpcm_step_table[c->step_index];
00147 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
00148 if (step_index < 0) step_index = 0;
00149 else if (step_index > 88) step_index = 88;
00150
00151 sign = nibble & 8;
00152 delta = nibble & 7;
00153
00154
00155
00156 diff = ((2 * delta + 1) * step) >> shift;
00157 predictor = c->predictor;
00158 if (sign) predictor -= diff;
00159 else predictor += diff;
00160
00161 c->predictor = av_clip_int16(predictor);
00162 c->step_index = step_index;
00163
00164 return (short)c->predictor;
00165 }
00166
00167 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
00168 {
00169 int step_index;
00170 int predictor;
00171 int diff, step;
00172
00173 step = ff_adpcm_step_table[c->step_index];
00174 step_index = c->step_index + ff_adpcm_index_table[nibble];
00175 step_index = av_clip(step_index, 0, 88);
00176
00177 diff = step >> 3;
00178 if (nibble & 4) diff += step;
00179 if (nibble & 2) diff += step >> 1;
00180 if (nibble & 1) diff += step >> 2;
00181
00182 if (nibble & 8)
00183 predictor = c->predictor - diff;
00184 else
00185 predictor = c->predictor + diff;
00186
00187 c->predictor = av_clip_int16(predictor);
00188 c->step_index = step_index;
00189
00190 return c->predictor;
00191 }
00192
00193 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
00194 {
00195 int predictor;
00196
00197 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
00198 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
00199
00200 c->sample2 = c->sample1;
00201 c->sample1 = av_clip_int16(predictor);
00202 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
00203 if (c->idelta < 16) c->idelta = 16;
00204
00205 return c->sample1;
00206 }
00207
00208 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
00209 {
00210 int sign, delta, diff;
00211 int new_step;
00212
00213 sign = nibble & 8;
00214 delta = nibble & 7;
00215
00216
00217
00218 diff = ((2 * delta + 1) * c->step) >> 3;
00219
00220 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
00221 c->predictor = av_clip_int16(c->predictor);
00222
00223 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
00224 c->step = av_clip(new_step, 511, 32767);
00225
00226 return (short)c->predictor;
00227 }
00228
00229 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
00230 {
00231 int sign, delta, diff;
00232
00233 sign = nibble & (1<<(size-1));
00234 delta = nibble & ((1<<(size-1))-1);
00235 diff = delta << (7 + c->step + shift);
00236
00237
00238 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
00239
00240
00241 if (delta >= (2*size - 3) && c->step < 3)
00242 c->step++;
00243 else if (delta == 0 && c->step > 0)
00244 c->step--;
00245
00246 return (short) c->predictor;
00247 }
00248
00249 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
00250 {
00251 if(!c->step) {
00252 c->predictor = 0;
00253 c->step = 127;
00254 }
00255
00256 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
00257 c->predictor = av_clip_int16(c->predictor);
00258 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
00259 c->step = av_clip(c->step, 127, 24567);
00260 return c->predictor;
00261 }
00262
00263 static void xa_decode(short *out, const unsigned char *in,
00264 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
00265 {
00266 int i, j;
00267 int shift,filter,f0,f1;
00268 int s_1,s_2;
00269 int d,s,t;
00270
00271 for(i=0;i<4;i++) {
00272
00273 shift = 12 - (in[4+i*2] & 15);
00274 filter = in[4+i*2] >> 4;
00275 f0 = xa_adpcm_table[filter][0];
00276 f1 = xa_adpcm_table[filter][1];
00277
00278 s_1 = left->sample1;
00279 s_2 = left->sample2;
00280
00281 for(j=0;j<28;j++) {
00282 d = in[16+i+j*4];
00283
00284 t = (signed char)(d<<4)>>4;
00285 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
00286 s_2 = s_1;
00287 s_1 = av_clip_int16(s);
00288 *out = s_1;
00289 out += inc;
00290 }
00291
00292 if (inc==2) {
00293 left->sample1 = s_1;
00294 left->sample2 = s_2;
00295 s_1 = right->sample1;
00296 s_2 = right->sample2;
00297 out = out + 1 - 28*2;
00298 }
00299
00300 shift = 12 - (in[5+i*2] & 15);
00301 filter = in[5+i*2] >> 4;
00302
00303 f0 = xa_adpcm_table[filter][0];
00304 f1 = xa_adpcm_table[filter][1];
00305
00306 for(j=0;j<28;j++) {
00307 d = in[16+i+j*4];
00308
00309 t = (signed char)d >> 4;
00310 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
00311 s_2 = s_1;
00312 s_1 = av_clip_int16(s);
00313 *out = s_1;
00314 out += inc;
00315 }
00316
00317 if (inc==2) {
00318 right->sample1 = s_1;
00319 right->sample2 = s_2;
00320 out -= 1;
00321 } else {
00322 left->sample1 = s_1;
00323 left->sample2 = s_2;
00324 }
00325 }
00326 }
00327
00337 static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
00338 int buf_size, int *coded_samples)
00339 {
00340 ADPCMDecodeContext *s = avctx->priv_data;
00341 int nb_samples = 0;
00342 int ch = avctx->channels;
00343 int has_coded_samples = 0;
00344 int header_size;
00345
00346 *coded_samples = 0;
00347
00348 switch (avctx->codec->id) {
00349
00350 case CODEC_ID_ADPCM_EA_XAS:
00351 if (buf_size < 76 * ch)
00352 return 0;
00353 nb_samples = 128;
00354 break;
00355 case CODEC_ID_ADPCM_IMA_QT:
00356 if (buf_size < 34 * ch)
00357 return 0;
00358 nb_samples = 64;
00359 break;
00360
00361 case CODEC_ID_ADPCM_CT:
00362 case CODEC_ID_ADPCM_IMA_EA_SEAD:
00363 case CODEC_ID_ADPCM_IMA_WS:
00364 case CODEC_ID_ADPCM_YAMAHA:
00365 nb_samples = buf_size * 2 / ch;
00366 break;
00367 }
00368 if (nb_samples)
00369 return nb_samples;
00370
00371
00372 header_size = 0;
00373 switch (avctx->codec->id) {
00374 case CODEC_ID_ADPCM_4XM:
00375 case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
00376 case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
00377 case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
00378 }
00379 if (header_size > 0)
00380 return (buf_size - header_size) * 2 / ch;
00381
00382
00383 switch (avctx->codec->id) {
00384 case CODEC_ID_ADPCM_EA:
00385 has_coded_samples = 1;
00386 if (buf_size < 4)
00387 return 0;
00388 *coded_samples = AV_RL32(buf);
00389 *coded_samples -= *coded_samples % 28;
00390 nb_samples = (buf_size - 12) / 30 * 28;
00391 break;
00392 case CODEC_ID_ADPCM_IMA_EA_EACS:
00393 has_coded_samples = 1;
00394 if (buf_size < 4)
00395 return 0;
00396 *coded_samples = AV_RL32(buf);
00397 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
00398 break;
00399 case CODEC_ID_ADPCM_EA_MAXIS_XA:
00400 nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
00401 break;
00402 case CODEC_ID_ADPCM_EA_R1:
00403 case CODEC_ID_ADPCM_EA_R2:
00404 case CODEC_ID_ADPCM_EA_R3:
00405
00406
00407 has_coded_samples = 1;
00408 if (buf_size < 4)
00409 return 0;
00410 switch (avctx->codec->id) {
00411 case CODEC_ID_ADPCM_EA_R1:
00412 header_size = 4 + 9 * ch;
00413 *coded_samples = AV_RL32(buf);
00414 break;
00415 case CODEC_ID_ADPCM_EA_R2:
00416 header_size = 4 + 5 * ch;
00417 *coded_samples = AV_RL32(buf);
00418 break;
00419 case CODEC_ID_ADPCM_EA_R3:
00420 header_size = 4 + 5 * ch;
00421 *coded_samples = AV_RB32(buf);
00422 break;
00423 }
00424 *coded_samples -= *coded_samples % 28;
00425 nb_samples = (buf_size - header_size) * 2 / ch;
00426 nb_samples -= nb_samples % 28;
00427 break;
00428 case CODEC_ID_ADPCM_IMA_DK3:
00429 if (avctx->block_align > 0)
00430 buf_size = FFMIN(buf_size, avctx->block_align);
00431 nb_samples = ((buf_size - 16) * 8 / 3) / ch;
00432 break;
00433 case CODEC_ID_ADPCM_IMA_DK4:
00434 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
00435 break;
00436 case CODEC_ID_ADPCM_IMA_WAV:
00437 if (avctx->block_align > 0)
00438 buf_size = FFMIN(buf_size, avctx->block_align);
00439 nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
00440 break;
00441 case CODEC_ID_ADPCM_MS:
00442 if (avctx->block_align > 0)
00443 buf_size = FFMIN(buf_size, avctx->block_align);
00444 nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
00445 break;
00446 case CODEC_ID_ADPCM_SBPRO_2:
00447 case CODEC_ID_ADPCM_SBPRO_3:
00448 case CODEC_ID_ADPCM_SBPRO_4:
00449 {
00450 int samples_per_byte;
00451 switch (avctx->codec->id) {
00452 case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
00453 case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
00454 case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
00455 }
00456 if (!s->status[0].step_index) {
00457 nb_samples++;
00458 buf_size -= ch;
00459 }
00460 nb_samples += buf_size * samples_per_byte / ch;
00461 break;
00462 }
00463 case CODEC_ID_ADPCM_SWF:
00464 {
00465 int buf_bits = buf_size * 8 - 2;
00466 int nbits = (buf[0] >> 6) + 2;
00467 int block_hdr_size = 22 * ch;
00468 int block_size = block_hdr_size + nbits * ch * 4095;
00469 int nblocks = buf_bits / block_size;
00470 int bits_left = buf_bits - nblocks * block_size;
00471 nb_samples = nblocks * 4096;
00472 if (bits_left >= block_hdr_size)
00473 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
00474 break;
00475 }
00476 case CODEC_ID_ADPCM_THP:
00477 has_coded_samples = 1;
00478 if (buf_size < 8)
00479 return 0;
00480 *coded_samples = AV_RB32(&buf[4]);
00481 *coded_samples -= *coded_samples % 14;
00482 nb_samples = (buf_size - 80) / (8 * ch) * 14;
00483 break;
00484 case CODEC_ID_ADPCM_XA:
00485 nb_samples = (buf_size / 128) * 224 / ch;
00486 break;
00487 }
00488
00489
00490 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
00491 return AVERROR_INVALIDDATA;
00492
00493 return nb_samples;
00494 }
00495
00496
00497 #define DK3_GET_NEXT_NIBBLE() \
00498 if (decode_top_nibble_next) \
00499 { \
00500 nibble = last_byte >> 4; \
00501 decode_top_nibble_next = 0; \
00502 } \
00503 else \
00504 { \
00505 if (end_of_packet) \
00506 break; \
00507 last_byte = *src++; \
00508 if (src >= buf + buf_size) \
00509 end_of_packet = 1; \
00510 nibble = last_byte & 0x0F; \
00511 decode_top_nibble_next = 1; \
00512 }
00513
00514 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
00515 int *got_frame_ptr, AVPacket *avpkt)
00516 {
00517 const uint8_t *buf = avpkt->data;
00518 int buf_size = avpkt->size;
00519 ADPCMDecodeContext *c = avctx->priv_data;
00520 ADPCMChannelStatus *cs;
00521 int n, m, channel, i;
00522 short *samples;
00523 const uint8_t *src;
00524 int st;
00525 int count1, count2;
00526 int nb_samples, coded_samples, ret;
00527
00528 nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
00529 if (nb_samples <= 0) {
00530 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
00531 return AVERROR_INVALIDDATA;
00532 }
00533
00534
00535 c->frame.nb_samples = nb_samples;
00536 if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
00537 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00538 return ret;
00539 }
00540 samples = (short *)c->frame.data[0];
00541
00542
00543
00544 if (coded_samples) {
00545 if (coded_samples != nb_samples)
00546 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
00547 c->frame.nb_samples = nb_samples = coded_samples;
00548 }
00549
00550 src = buf;
00551
00552 st = avctx->channels == 2 ? 1 : 0;
00553
00554 switch(avctx->codec->id) {
00555 case CODEC_ID_ADPCM_IMA_QT:
00556
00557
00558 for (channel = 0; channel < avctx->channels; channel++) {
00559 int16_t predictor;
00560 int step_index;
00561 cs = &(c->status[channel]);
00562
00563
00564
00565 predictor = AV_RB16(src);
00566 step_index = predictor & 0x7F;
00567 predictor &= 0xFF80;
00568
00569 src += 2;
00570
00571 if (cs->step_index == step_index) {
00572 int diff = (int)predictor - cs->predictor;
00573 if (diff < 0)
00574 diff = - diff;
00575 if (diff > 0x7f)
00576 goto update;
00577 } else {
00578 update:
00579 cs->step_index = step_index;
00580 cs->predictor = predictor;
00581 }
00582
00583 if (cs->step_index > 88){
00584 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
00585 cs->step_index = 88;
00586 }
00587
00588 samples = (short *)c->frame.data[0] + channel;
00589
00590 for (m = 0; m < 32; m++) {
00591 *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
00592 samples += avctx->channels;
00593 *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3);
00594 samples += avctx->channels;
00595 src ++;
00596 }
00597 }
00598 break;
00599 case CODEC_ID_ADPCM_IMA_WAV:
00600 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00601 buf_size = avctx->block_align;
00602
00603 for(i=0; i<avctx->channels; i++){
00604 cs = &(c->status[i]);
00605 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
00606
00607 cs->step_index = *src++;
00608 if (cs->step_index > 88){
00609 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
00610 cs->step_index = 88;
00611 }
00612 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]);
00613 }
00614
00615 for (n = (nb_samples - 1) / 8; n > 0; n--) {
00616 for (i = 0; i < avctx->channels; i++) {
00617 cs = &c->status[i];
00618 for (m = 0; m < 4; m++) {
00619 uint8_t v = *src++;
00620 *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
00621 samples += avctx->channels;
00622 *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
00623 samples += avctx->channels;
00624 }
00625 samples -= 8 * avctx->channels - 1;
00626 }
00627 samples += 7 * avctx->channels;
00628 }
00629 break;
00630 case CODEC_ID_ADPCM_4XM:
00631 for (i = 0; i < avctx->channels; i++)
00632 c->status[i].predictor= (int16_t)bytestream_get_le16(&src);
00633
00634 for (i = 0; i < avctx->channels; i++) {
00635 c->status[i].step_index= (int16_t)bytestream_get_le16(&src);
00636 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
00637 }
00638
00639 for (i = 0; i < avctx->channels; i++) {
00640 samples = (short *)c->frame.data[0] + i;
00641 cs = &c->status[i];
00642 for (n = nb_samples >> 1; n > 0; n--, src++) {
00643 uint8_t v = *src;
00644 *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
00645 samples += avctx->channels;
00646 *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
00647 samples += avctx->channels;
00648 }
00649 }
00650 break;
00651 case CODEC_ID_ADPCM_MS:
00652 {
00653 int block_predictor;
00654
00655 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00656 buf_size = avctx->block_align;
00657
00658 block_predictor = av_clip(*src++, 0, 6);
00659 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
00660 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
00661 if (st) {
00662 block_predictor = av_clip(*src++, 0, 6);
00663 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
00664 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
00665 }
00666 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
00667 if (st){
00668 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
00669 }
00670
00671 c->status[0].sample1 = bytestream_get_le16(&src);
00672 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
00673 c->status[0].sample2 = bytestream_get_le16(&src);
00674 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
00675
00676 *samples++ = c->status[0].sample2;
00677 if (st) *samples++ = c->status[1].sample2;
00678 *samples++ = c->status[0].sample1;
00679 if (st) *samples++ = c->status[1].sample1;
00680 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) {
00681 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
00682 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
00683 }
00684 break;
00685 }
00686 case CODEC_ID_ADPCM_IMA_DK4:
00687 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00688 buf_size = avctx->block_align;
00689
00690 for (channel = 0; channel < avctx->channels; channel++) {
00691 cs = &c->status[channel];
00692 cs->predictor = (int16_t)bytestream_get_le16(&src);
00693 cs->step_index = *src++;
00694 src++;
00695 *samples++ = cs->predictor;
00696 }
00697 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00698 uint8_t v = *src;
00699 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
00700 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
00701 }
00702 break;
00703 case CODEC_ID_ADPCM_IMA_DK3:
00704 {
00705 unsigned char last_byte = 0;
00706 unsigned char nibble;
00707 int decode_top_nibble_next = 0;
00708 int end_of_packet = 0;
00709 int diff_channel;
00710
00711 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00712 buf_size = avctx->block_align;
00713
00714 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
00715 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
00716 c->status[0].step_index = src[14];
00717 c->status[1].step_index = src[15];
00718
00719 src += 16;
00720 diff_channel = c->status[1].predictor;
00721
00722
00723
00724 while (1) {
00725
00726
00727
00728
00729
00730 DK3_GET_NEXT_NIBBLE();
00731 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
00732
00733
00734 DK3_GET_NEXT_NIBBLE();
00735 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
00736
00737
00738 diff_channel = (diff_channel + c->status[1].predictor) / 2;
00739 *samples++ = c->status[0].predictor + c->status[1].predictor;
00740 *samples++ = c->status[0].predictor - c->status[1].predictor;
00741
00742
00743 DK3_GET_NEXT_NIBBLE();
00744 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
00745
00746
00747 diff_channel = (diff_channel + c->status[1].predictor) / 2;
00748 *samples++ = c->status[0].predictor + c->status[1].predictor;
00749 *samples++ = c->status[0].predictor - c->status[1].predictor;
00750 }
00751 break;
00752 }
00753 case CODEC_ID_ADPCM_IMA_ISS:
00754 for (channel = 0; channel < avctx->channels; channel++) {
00755 cs = &c->status[channel];
00756 cs->predictor = (int16_t)bytestream_get_le16(&src);
00757 cs->step_index = *src++;
00758 src++;
00759 }
00760
00761 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00762 uint8_t v1, v2;
00763 uint8_t v = *src;
00764
00765 if (st) {
00766 v1 = v >> 4;
00767 v2 = v & 0x0F;
00768 } else {
00769 v2 = v >> 4;
00770 v1 = v & 0x0F;
00771 }
00772 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
00773 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
00774 }
00775 break;
00776 case CODEC_ID_ADPCM_IMA_WS:
00777 while (src < buf + buf_size) {
00778 uint8_t v = *src++;
00779 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
00780 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
00781 }
00782 break;
00783 case CODEC_ID_ADPCM_XA:
00784 while (buf_size >= 128) {
00785 xa_decode(samples, src, &c->status[0], &c->status[1],
00786 avctx->channels);
00787 src += 128;
00788 samples += 28 * 8;
00789 buf_size -= 128;
00790 }
00791 break;
00792 case CODEC_ID_ADPCM_IMA_EA_EACS:
00793 src += 4;
00794
00795 for (i=0; i<=st; i++)
00796 c->status[i].step_index = bytestream_get_le32(&src);
00797 for (i=0; i<=st; i++)
00798 c->status[i].predictor = bytestream_get_le32(&src);
00799
00800 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00801 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
00802 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
00803 }
00804 break;
00805 case CODEC_ID_ADPCM_IMA_EA_SEAD:
00806 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00807 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
00808 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
00809 }
00810 break;
00811 case CODEC_ID_ADPCM_EA:
00812 {
00813 int32_t previous_left_sample, previous_right_sample;
00814 int32_t current_left_sample, current_right_sample;
00815 int32_t next_left_sample, next_right_sample;
00816 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
00817 uint8_t shift_left, shift_right;
00818
00819
00820
00821
00822 src += 4;
00823
00824 current_left_sample = (int16_t)bytestream_get_le16(&src);
00825 previous_left_sample = (int16_t)bytestream_get_le16(&src);
00826 current_right_sample = (int16_t)bytestream_get_le16(&src);
00827 previous_right_sample = (int16_t)bytestream_get_le16(&src);
00828
00829 for (count1 = 0; count1 < nb_samples / 28; count1++) {
00830 coeff1l = ea_adpcm_table[ *src >> 4 ];
00831 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
00832 coeff1r = ea_adpcm_table[*src & 0x0F];
00833 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
00834 src++;
00835
00836 shift_left = 20 - (*src >> 4);
00837 shift_right = 20 - (*src & 0x0F);
00838 src++;
00839
00840 for (count2 = 0; count2 < 28; count2++) {
00841 next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
00842 next_right_sample = sign_extend(*src, 4) << shift_right;
00843 src++;
00844
00845 next_left_sample = (next_left_sample +
00846 (current_left_sample * coeff1l) +
00847 (previous_left_sample * coeff2l) + 0x80) >> 8;
00848 next_right_sample = (next_right_sample +
00849 (current_right_sample * coeff1r) +
00850 (previous_right_sample * coeff2r) + 0x80) >> 8;
00851
00852 previous_left_sample = current_left_sample;
00853 current_left_sample = av_clip_int16(next_left_sample);
00854 previous_right_sample = current_right_sample;
00855 current_right_sample = av_clip_int16(next_right_sample);
00856 *samples++ = (unsigned short)current_left_sample;
00857 *samples++ = (unsigned short)current_right_sample;
00858 }
00859 }
00860
00861 if (src - buf == buf_size - 2)
00862 src += 2;
00863
00864 break;
00865 }
00866 case CODEC_ID_ADPCM_EA_MAXIS_XA:
00867 {
00868 int coeff[2][2], shift[2];
00869
00870 for(channel = 0; channel < avctx->channels; channel++) {
00871 for (i=0; i<2; i++)
00872 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
00873 shift[channel] = 20 - (*src & 0x0F);
00874 src++;
00875 }
00876 for (count1 = 0; count1 < nb_samples / 2; count1++) {
00877 for(i = 4; i >= 0; i-=4) {
00878 for(channel = 0; channel < avctx->channels; channel++) {
00879 int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
00880 sample = (sample +
00881 c->status[channel].sample1 * coeff[channel][0] +
00882 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
00883 c->status[channel].sample2 = c->status[channel].sample1;
00884 c->status[channel].sample1 = av_clip_int16(sample);
00885 *samples++ = c->status[channel].sample1;
00886 }
00887 }
00888 src+=avctx->channels;
00889 }
00890
00891 src = buf + buf_size;
00892 break;
00893 }
00894 case CODEC_ID_ADPCM_EA_R1:
00895 case CODEC_ID_ADPCM_EA_R2:
00896 case CODEC_ID_ADPCM_EA_R3: {
00897
00898
00899
00900
00901 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
00902 int32_t previous_sample, current_sample, next_sample;
00903 int32_t coeff1, coeff2;
00904 uint8_t shift;
00905 unsigned int channel;
00906 uint16_t *samplesC;
00907 const uint8_t *srcC;
00908 const uint8_t *src_end = buf + buf_size;
00909 int count = 0;
00910
00911 src += 4;
00912
00913 for (channel=0; channel<avctx->channels; channel++) {
00914 int32_t offset = (big_endian ? bytestream_get_be32(&src)
00915 : bytestream_get_le32(&src))
00916 + (avctx->channels-channel-1) * 4;
00917
00918 if ((offset < 0) || (offset >= src_end - src - 4)) break;
00919 srcC = src + offset;
00920 samplesC = samples + channel;
00921
00922 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
00923 current_sample = (int16_t)bytestream_get_le16(&srcC);
00924 previous_sample = (int16_t)bytestream_get_le16(&srcC);
00925 } else {
00926 current_sample = c->status[channel].predictor;
00927 previous_sample = c->status[channel].prev_sample;
00928 }
00929
00930 for (count1 = 0; count1 < nb_samples / 28; count1++) {
00931 if (*srcC == 0xEE) {
00932 srcC++;
00933 if (srcC > src_end - 30*2) break;
00934 current_sample = (int16_t)bytestream_get_be16(&srcC);
00935 previous_sample = (int16_t)bytestream_get_be16(&srcC);
00936
00937 for (count2=0; count2<28; count2++) {
00938 *samplesC = (int16_t)bytestream_get_be16(&srcC);
00939 samplesC += avctx->channels;
00940 }
00941 } else {
00942 coeff1 = ea_adpcm_table[ *srcC>>4 ];
00943 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
00944 shift = 20 - (*srcC++ & 0x0F);
00945
00946 if (srcC > src_end - 14) break;
00947 for (count2=0; count2<28; count2++) {
00948 if (count2 & 1)
00949 next_sample = sign_extend(*srcC++, 4) << shift;
00950 else
00951 next_sample = sign_extend(*srcC >> 4, 4) << shift;
00952
00953 next_sample += (current_sample * coeff1) +
00954 (previous_sample * coeff2);
00955 next_sample = av_clip_int16(next_sample >> 8);
00956
00957 previous_sample = current_sample;
00958 current_sample = next_sample;
00959 *samplesC = current_sample;
00960 samplesC += avctx->channels;
00961 }
00962 }
00963 }
00964 if (!count) {
00965 count = count1;
00966 } else if (count != count1) {
00967 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
00968 count = FFMAX(count, count1);
00969 }
00970
00971 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
00972 c->status[channel].predictor = current_sample;
00973 c->status[channel].prev_sample = previous_sample;
00974 }
00975 }
00976
00977 c->frame.nb_samples = count * 28;
00978 src = src_end;
00979 break;
00980 }
00981 case CODEC_ID_ADPCM_EA_XAS:
00982 for (channel=0; channel<avctx->channels; channel++) {
00983 int coeff[2][4], shift[4];
00984 short *s2, *s = &samples[channel];
00985 for (n=0; n<4; n++, s+=32*avctx->channels) {
00986 for (i=0; i<2; i++)
00987 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
00988 shift[n] = 20 - (src[2] & 0x0F);
00989 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
00990 s2[0] = (src[0]&0xF0) + (src[1]<<8);
00991 }
00992
00993 for (m=2; m<32; m+=2) {
00994 s = &samples[m*avctx->channels + channel];
00995 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
00996 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
00997 int level = sign_extend(*src >> (4 - i), 4) << shift[n];
00998 int pred = s2[-1*avctx->channels] * coeff[0][n]
00999 + s2[-2*avctx->channels] * coeff[1][n];
01000 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
01001 }
01002 }
01003 }
01004 }
01005 break;
01006 case CODEC_ID_ADPCM_IMA_AMV:
01007 case CODEC_ID_ADPCM_IMA_SMJPEG:
01008 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
01009 c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
01010 c->status[0].step_index = bytestream_get_le16(&src);
01011 src += 4;
01012 } else {
01013 c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
01014 c->status[0].step_index = bytestream_get_byte(&src);
01015 src += 1;
01016 }
01017
01018 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01019 char hi, lo;
01020 lo = *src & 0x0F;
01021 hi = *src >> 4;
01022
01023 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
01024 FFSWAP(char, hi, lo);
01025
01026 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
01027 lo, 3);
01028 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
01029 hi, 3);
01030 }
01031 break;
01032 case CODEC_ID_ADPCM_CT:
01033 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01034 uint8_t v = *src;
01035 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
01036 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
01037 }
01038 break;
01039 case CODEC_ID_ADPCM_SBPRO_4:
01040 case CODEC_ID_ADPCM_SBPRO_3:
01041 case CODEC_ID_ADPCM_SBPRO_2:
01042 if (!c->status[0].step_index) {
01043
01044 *samples++ = 128 * (*src++ - 0x80);
01045 if (st)
01046 *samples++ = 128 * (*src++ - 0x80);
01047 c->status[0].step_index = 1;
01048 nb_samples--;
01049 }
01050 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
01051 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01052 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01053 src[0] >> 4, 4, 0);
01054 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01055 src[0] & 0x0F, 4, 0);
01056 }
01057 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
01058 for (n = nb_samples / 3; n > 0; n--, src++) {
01059 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01060 src[0] >> 5 , 3, 0);
01061 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01062 (src[0] >> 2) & 0x07, 3, 0);
01063 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01064 src[0] & 0x03, 2, 0);
01065 }
01066 } else {
01067 for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
01068 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01069 src[0] >> 6 , 2, 2);
01070 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01071 (src[0] >> 4) & 0x03, 2, 2);
01072 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01073 (src[0] >> 2) & 0x03, 2, 2);
01074 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01075 src[0] & 0x03, 2, 2);
01076 }
01077 }
01078 break;
01079 case CODEC_ID_ADPCM_SWF:
01080 {
01081 GetBitContext gb;
01082 const int *table;
01083 int k0, signmask, nb_bits, count;
01084 int size = buf_size*8;
01085
01086 init_get_bits(&gb, buf, size);
01087
01088
01089 nb_bits = get_bits(&gb, 2)+2;
01090
01091 table = swf_index_tables[nb_bits-2];
01092 k0 = 1 << (nb_bits-2);
01093 signmask = 1 << (nb_bits-1);
01094
01095 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
01096 for (i = 0; i < avctx->channels; i++) {
01097 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
01098 c->status[i].step_index = get_bits(&gb, 6);
01099 }
01100
01101 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
01102 int i;
01103
01104 for (i = 0; i < avctx->channels; i++) {
01105
01106 int delta = get_bits(&gb, nb_bits);
01107 int step = ff_adpcm_step_table[c->status[i].step_index];
01108 long vpdiff = 0;
01109 int k = k0;
01110
01111 do {
01112 if (delta & k)
01113 vpdiff += step;
01114 step >>= 1;
01115 k >>= 1;
01116 } while(k);
01117 vpdiff += step;
01118
01119 if (delta & signmask)
01120 c->status[i].predictor -= vpdiff;
01121 else
01122 c->status[i].predictor += vpdiff;
01123
01124 c->status[i].step_index += table[delta & (~signmask)];
01125
01126 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
01127 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
01128
01129 *samples++ = c->status[i].predictor;
01130 }
01131 }
01132 }
01133 src += buf_size;
01134 break;
01135 }
01136 case CODEC_ID_ADPCM_YAMAHA:
01137 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01138 uint8_t v = *src;
01139 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
01140 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
01141 }
01142 break;
01143 case CODEC_ID_ADPCM_THP:
01144 {
01145 int table[2][16];
01146 int prev[2][2];
01147 int ch;
01148
01149 src += 4;
01150 src += 4;
01151
01152 for (i = 0; i < 32; i++)
01153 table[0][i] = (int16_t)bytestream_get_be16(&src);
01154
01155
01156 for (i = 0; i < 4; i++)
01157 prev[0][i] = (int16_t)bytestream_get_be16(&src);
01158
01159 for (ch = 0; ch <= st; ch++) {
01160 samples = (short *)c->frame.data[0] + ch;
01161
01162
01163 for (i = 0; i < nb_samples / 14; i++) {
01164 int index = (*src >> 4) & 7;
01165 unsigned int exp = *src++ & 15;
01166 int factor1 = table[ch][index * 2];
01167 int factor2 = table[ch][index * 2 + 1];
01168
01169
01170 for (n = 0; n < 14; n++) {
01171 int32_t sampledat;
01172 if(n&1) sampledat = sign_extend(*src++, 4);
01173 else sampledat = sign_extend(*src >> 4, 4);
01174
01175 sampledat = ((prev[ch][0]*factor1
01176 + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
01177 *samples = av_clip_int16(sampledat);
01178 prev[ch][1] = prev[ch][0];
01179 prev[ch][0] = *samples++;
01180
01181
01182
01183 samples += st;
01184 }
01185 }
01186 }
01187 break;
01188 }
01189
01190 default:
01191 return -1;
01192 }
01193
01194 *got_frame_ptr = 1;
01195 *(AVFrame *)data = c->frame;
01196
01197 return src - buf;
01198 }
01199
01200
01201 #define ADPCM_DECODER(id_, name_, long_name_) \
01202 AVCodec ff_ ## name_ ## _decoder = { \
01203 .name = #name_, \
01204 .type = AVMEDIA_TYPE_AUDIO, \
01205 .id = id_, \
01206 .priv_data_size = sizeof(ADPCMDecodeContext), \
01207 .init = adpcm_decode_init, \
01208 .decode = adpcm_decode_frame, \
01209 .capabilities = CODEC_CAP_DR1, \
01210 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
01211 }
01212
01213
01214 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
01215 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
01216 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
01217 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
01218 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
01219 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
01220 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
01221 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
01222 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
01223 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
01224 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
01225 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
01226 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
01227 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
01228 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
01229 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
01230 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
01231 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
01232 ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
01233 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
01234 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
01235 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
01236 ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
01237 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
01238 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
01239 ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");