00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00027 #include "libavutil/audioconvert.h"
00028 #include "avcodec.h"
00029 #include "get_bits.h"
00030 #include "mathops.h"
00031 #include "mpegaudiodsp.h"
00032
00033
00034
00035
00036
00037
00038 #include "mpegaudio.h"
00039 #include "mpegaudiodecheader.h"
00040
00041 #define BACKSTEP_SIZE 512
00042 #define EXTRABYTES 24
00043
00044
00045 typedef struct GranuleDef {
00046 uint8_t scfsi;
00047 int part2_3_length;
00048 int big_values;
00049 int global_gain;
00050 int scalefac_compress;
00051 uint8_t block_type;
00052 uint8_t switch_point;
00053 int table_select[3];
00054 int subblock_gain[3];
00055 uint8_t scalefac_scale;
00056 uint8_t count1table_select;
00057 int region_size[3];
00058 int preflag;
00059 int short_start, long_end;
00060 uint8_t scale_factors[40];
00061 DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18];
00062 } GranuleDef;
00063
00064 typedef struct MPADecodeContext {
00065 MPA_DECODE_HEADER
00066 uint8_t last_buf[2 * BACKSTEP_SIZE + EXTRABYTES];
00067 int last_buf_size;
00068
00069 uint32_t free_format_next_header;
00070 GetBitContext gb;
00071 GetBitContext in_gb;
00072 DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
00073 int synth_buf_offset[MPA_MAX_CHANNELS];
00074 DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
00075 INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18];
00076 GranuleDef granules[2][2];
00077 int adu_mode;
00078 int dither_state;
00079 int err_recognition;
00080 AVCodecContext* avctx;
00081 MPADSPContext mpadsp;
00082 AVFrame frame;
00083 } MPADecodeContext;
00084
00085 #if CONFIG_FLOAT
00086 # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
00087 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00088 # define FIXR(x) ((float)(x))
00089 # define FIXHR(x) ((float)(x))
00090 # define MULH3(x, y, s) ((s)*(y)*(x))
00091 # define MULLx(x, y, s) ((y)*(x))
00092 # define RENAME(a) a ## _float
00093 # define OUT_FMT AV_SAMPLE_FMT_FLT
00094 #else
00095 # define SHR(a,b) ((a)>>(b))
00096
00097 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00098 # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
00099 # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
00100 # define MULH3(x, y, s) MULH((s)*(x), y)
00101 # define MULLx(x, y, s) MULL(x,y,s)
00102 # define RENAME(a) a ## _fixed
00103 # define OUT_FMT AV_SAMPLE_FMT_S16
00104 #endif
00105
00106
00107
00108 #define HEADER_SIZE 4
00109
00110 #include "mpegaudiodata.h"
00111 #include "mpegaudiodectab.h"
00112
00113
00114 static VLC huff_vlc[16];
00115 static VLC_TYPE huff_vlc_tables[
00116 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
00117 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
00118 ][2];
00119 static const int huff_vlc_tables_sizes[16] = {
00120 0, 128, 128, 128, 130, 128, 154, 166,
00121 142, 204, 190, 170, 542, 460, 662, 414
00122 };
00123 static VLC huff_quad_vlc[2];
00124 static VLC_TYPE huff_quad_vlc_tables[128+16][2];
00125 static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
00126
00127 static uint16_t band_index_long[9][23];
00128 #include "mpegaudio_tablegen.h"
00129
00130 static INTFLOAT is_table[2][16];
00131 static INTFLOAT is_table_lsf[2][2][16];
00132 static INTFLOAT csa_table[8][4];
00133
00134 static int16_t division_tab3[1<<6 ];
00135 static int16_t division_tab5[1<<8 ];
00136 static int16_t division_tab9[1<<11];
00137
00138 static int16_t * const division_tabs[4] = {
00139 division_tab3, division_tab5, NULL, division_tab9
00140 };
00141
00142
00143 static uint16_t scale_factor_modshift[64];
00144
00145 static int32_t scale_factor_mult[15][3];
00146
00147
00148 #define SCALE_GEN(v) \
00149 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
00150
00151 static const int32_t scale_factor_mult2[3][3] = {
00152 SCALE_GEN(4.0 / 3.0),
00153 SCALE_GEN(4.0 / 5.0),
00154 SCALE_GEN(4.0 / 9.0),
00155 };
00156
00161 static void ff_region_offset2size(GranuleDef *g)
00162 {
00163 int i, k, j = 0;
00164 g->region_size[2] = 576 / 2;
00165 for (i = 0; i < 3; i++) {
00166 k = FFMIN(g->region_size[i], g->big_values);
00167 g->region_size[i] = k - j;
00168 j = k;
00169 }
00170 }
00171
00172 static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
00173 {
00174 if (g->block_type == 2)
00175 g->region_size[0] = (36 / 2);
00176 else {
00177 if (s->sample_rate_index <= 2)
00178 g->region_size[0] = (36 / 2);
00179 else if (s->sample_rate_index != 8)
00180 g->region_size[0] = (54 / 2);
00181 else
00182 g->region_size[0] = (108 / 2);
00183 }
00184 g->region_size[1] = (576 / 2);
00185 }
00186
00187 static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
00188 {
00189 int l;
00190 g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
00191
00192 l = FFMIN(ra1 + ra2 + 2, 22);
00193 g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
00194 }
00195
00196 static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
00197 {
00198 if (g->block_type == 2) {
00199 if (g->switch_point) {
00200
00201
00202
00203 if (s->sample_rate_index <= 2)
00204 g->long_end = 8;
00205 else if (s->sample_rate_index != 8)
00206 g->long_end = 6;
00207 else
00208 g->long_end = 4;
00209
00210 g->short_start = 2 + (s->sample_rate_index != 8);
00211 } else {
00212 g->long_end = 0;
00213 g->short_start = 0;
00214 }
00215 } else {
00216 g->short_start = 13;
00217 g->long_end = 22;
00218 }
00219 }
00220
00221
00222
00223 static inline int l1_unscale(int n, int mant, int scale_factor)
00224 {
00225 int shift, mod;
00226 int64_t val;
00227
00228 shift = scale_factor_modshift[scale_factor];
00229 mod = shift & 3;
00230 shift >>= 2;
00231 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
00232 shift += n;
00233
00234 return (int)((val + (1LL << (shift - 1))) >> shift);
00235 }
00236
00237 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
00238 {
00239 int shift, mod, val;
00240
00241 shift = scale_factor_modshift[scale_factor];
00242 mod = shift & 3;
00243 shift >>= 2;
00244
00245 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
00246
00247 if (shift > 0)
00248 val = (val + (1 << (shift - 1))) >> shift;
00249 return val;
00250 }
00251
00252
00253 static inline int l3_unscale(int value, int exponent)
00254 {
00255 unsigned int m;
00256 int e;
00257
00258 e = table_4_3_exp [4 * value + (exponent & 3)];
00259 m = table_4_3_value[4 * value + (exponent & 3)];
00260 e -= exponent >> 2;
00261 assert(e >= 1);
00262 if (e > 31)
00263 return 0;
00264 m = (m + (1 << (e - 1))) >> e;
00265
00266 return m;
00267 }
00268
00269 static av_cold void decode_init_static(void)
00270 {
00271 int i, j, k;
00272 int offset;
00273
00274
00275 for (i = 0; i < 64; i++) {
00276 int shift, mod;
00277
00278 shift = i / 3;
00279 mod = i % 3;
00280 scale_factor_modshift[i] = mod | (shift << 2);
00281 }
00282
00283
00284 for (i = 0; i < 15; i++) {
00285 int n, norm;
00286 n = i + 2;
00287 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
00288 scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
00289 scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
00290 scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
00291 av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
00292 scale_factor_mult[i][0],
00293 scale_factor_mult[i][1],
00294 scale_factor_mult[i][2]);
00295 }
00296
00297 RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
00298
00299
00300 offset = 0;
00301 for (i = 1; i < 16; i++) {
00302 const HuffTable *h = &mpa_huff_tables[i];
00303 int xsize, x, y;
00304 uint8_t tmp_bits [512];
00305 uint16_t tmp_codes[512];
00306
00307 memset(tmp_bits , 0, sizeof(tmp_bits ));
00308 memset(tmp_codes, 0, sizeof(tmp_codes));
00309
00310 xsize = h->xsize;
00311
00312 j = 0;
00313 for (x = 0; x < xsize; x++) {
00314 for (y = 0; y < xsize; y++) {
00315 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
00316 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
00317 }
00318 }
00319
00320
00321 huff_vlc[i].table = huff_vlc_tables+offset;
00322 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
00323 init_vlc(&huff_vlc[i], 7, 512,
00324 tmp_bits, 1, 1, tmp_codes, 2, 2,
00325 INIT_VLC_USE_NEW_STATIC);
00326 offset += huff_vlc_tables_sizes[i];
00327 }
00328 assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
00329
00330 offset = 0;
00331 for (i = 0; i < 2; i++) {
00332 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
00333 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
00334 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
00335 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
00336 INIT_VLC_USE_NEW_STATIC);
00337 offset += huff_quad_vlc_tables_sizes[i];
00338 }
00339 assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
00340
00341 for (i = 0; i < 9; i++) {
00342 k = 0;
00343 for (j = 0; j < 22; j++) {
00344 band_index_long[i][j] = k;
00345 k += band_size_long[i][j];
00346 }
00347 band_index_long[i][22] = k;
00348 }
00349
00350
00351
00352 mpegaudio_tableinit();
00353
00354 for (i = 0; i < 4; i++) {
00355 if (ff_mpa_quant_bits[i] < 0) {
00356 for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
00357 int val1, val2, val3, steps;
00358 int val = j;
00359 steps = ff_mpa_quant_steps[i];
00360 val1 = val % steps;
00361 val /= steps;
00362 val2 = val % steps;
00363 val3 = val / steps;
00364 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
00365 }
00366 }
00367 }
00368
00369
00370 for (i = 0; i < 7; i++) {
00371 float f;
00372 INTFLOAT v;
00373 if (i != 6) {
00374 f = tan((double)i * M_PI / 12.0);
00375 v = FIXR(f / (1.0 + f));
00376 } else {
00377 v = FIXR(1.0);
00378 }
00379 is_table[0][ i] = v;
00380 is_table[1][6 - i] = v;
00381 }
00382
00383 for (i = 7; i < 16; i++)
00384 is_table[0][i] = is_table[1][i] = 0.0;
00385
00386 for (i = 0; i < 16; i++) {
00387 double f;
00388 int e, k;
00389
00390 for (j = 0; j < 2; j++) {
00391 e = -(j + 1) * ((i + 1) >> 1);
00392 f = pow(2.0, e / 4.0);
00393 k = i & 1;
00394 is_table_lsf[j][k ^ 1][i] = FIXR(f);
00395 is_table_lsf[j][k ][i] = FIXR(1.0);
00396 av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
00397 i, j, (float) is_table_lsf[j][0][i],
00398 (float) is_table_lsf[j][1][i]);
00399 }
00400 }
00401
00402 for (i = 0; i < 8; i++) {
00403 float ci, cs, ca;
00404 ci = ci_table[i];
00405 cs = 1.0 / sqrt(1.0 + ci * ci);
00406 ca = cs * ci;
00407 #if !CONFIG_FLOAT
00408 csa_table[i][0] = FIXHR(cs/4);
00409 csa_table[i][1] = FIXHR(ca/4);
00410 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
00411 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
00412 #else
00413 csa_table[i][0] = cs;
00414 csa_table[i][1] = ca;
00415 csa_table[i][2] = ca + cs;
00416 csa_table[i][3] = ca - cs;
00417 #endif
00418 }
00419 }
00420
00421 static av_cold int decode_init(AVCodecContext * avctx)
00422 {
00423 static int initialized_tables = 0;
00424 MPADecodeContext *s = avctx->priv_data;
00425
00426 if (!initialized_tables) {
00427 decode_init_static();
00428 initialized_tables = 1;
00429 }
00430
00431 s->avctx = avctx;
00432
00433 ff_mpadsp_init(&s->mpadsp);
00434
00435 avctx->sample_fmt= OUT_FMT;
00436 s->err_recognition = avctx->err_recognition;
00437
00438 if (avctx->codec_id == CODEC_ID_MP3ADU)
00439 s->adu_mode = 1;
00440
00441 avcodec_get_frame_defaults(&s->frame);
00442 avctx->coded_frame = &s->frame;
00443
00444 return 0;
00445 }
00446
00447 #define C3 FIXHR(0.86602540378443864676/2)
00448 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
00449 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
00450 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
00451
00452
00453
00454 static void imdct12(INTFLOAT *out, INTFLOAT *in)
00455 {
00456 INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
00457
00458 in0 = in[0*3];
00459 in1 = in[1*3] + in[0*3];
00460 in2 = in[2*3] + in[1*3];
00461 in3 = in[3*3] + in[2*3];
00462 in4 = in[4*3] + in[3*3];
00463 in5 = in[5*3] + in[4*3];
00464 in5 += in3;
00465 in3 += in1;
00466
00467 in2 = MULH3(in2, C3, 2);
00468 in3 = MULH3(in3, C3, 4);
00469
00470 t1 = in0 - in4;
00471 t2 = MULH3(in1 - in5, C4, 2);
00472
00473 out[ 7] =
00474 out[10] = t1 + t2;
00475 out[ 1] =
00476 out[ 4] = t1 - t2;
00477
00478 in0 += SHR(in4, 1);
00479 in4 = in0 + in2;
00480 in5 += 2*in1;
00481 in1 = MULH3(in5 + in3, C5, 1);
00482 out[ 8] =
00483 out[ 9] = in4 + in1;
00484 out[ 2] =
00485 out[ 3] = in4 - in1;
00486
00487 in0 -= in2;
00488 in5 = MULH3(in5 - in3, C6, 2);
00489 out[ 0] =
00490 out[ 5] = in0 - in5;
00491 out[ 6] =
00492 out[11] = in0 + in5;
00493 }
00494
00495
00496 static int mp_decode_layer1(MPADecodeContext *s)
00497 {
00498 int bound, i, v, n, ch, j, mant;
00499 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
00500 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
00501
00502 if (s->mode == MPA_JSTEREO)
00503 bound = (s->mode_ext + 1) * 4;
00504 else
00505 bound = SBLIMIT;
00506
00507
00508 for (i = 0; i < bound; i++) {
00509 for (ch = 0; ch < s->nb_channels; ch++) {
00510 allocation[ch][i] = get_bits(&s->gb, 4);
00511 }
00512 }
00513 for (i = bound; i < SBLIMIT; i++)
00514 allocation[0][i] = get_bits(&s->gb, 4);
00515
00516
00517 for (i = 0; i < bound; i++) {
00518 for (ch = 0; ch < s->nb_channels; ch++) {
00519 if (allocation[ch][i])
00520 scale_factors[ch][i] = get_bits(&s->gb, 6);
00521 }
00522 }
00523 for (i = bound; i < SBLIMIT; i++) {
00524 if (allocation[0][i]) {
00525 scale_factors[0][i] = get_bits(&s->gb, 6);
00526 scale_factors[1][i] = get_bits(&s->gb, 6);
00527 }
00528 }
00529
00530
00531 for (j = 0; j < 12; j++) {
00532 for (i = 0; i < bound; i++) {
00533 for (ch = 0; ch < s->nb_channels; ch++) {
00534 n = allocation[ch][i];
00535 if (n) {
00536 mant = get_bits(&s->gb, n + 1);
00537 v = l1_unscale(n, mant, scale_factors[ch][i]);
00538 } else {
00539 v = 0;
00540 }
00541 s->sb_samples[ch][j][i] = v;
00542 }
00543 }
00544 for (i = bound; i < SBLIMIT; i++) {
00545 n = allocation[0][i];
00546 if (n) {
00547 mant = get_bits(&s->gb, n + 1);
00548 v = l1_unscale(n, mant, scale_factors[0][i]);
00549 s->sb_samples[0][j][i] = v;
00550 v = l1_unscale(n, mant, scale_factors[1][i]);
00551 s->sb_samples[1][j][i] = v;
00552 } else {
00553 s->sb_samples[0][j][i] = 0;
00554 s->sb_samples[1][j][i] = 0;
00555 }
00556 }
00557 }
00558 return 12;
00559 }
00560
00561 static int mp_decode_layer2(MPADecodeContext *s)
00562 {
00563 int sblimit;
00564 const unsigned char *alloc_table;
00565 int table, bit_alloc_bits, i, j, ch, bound, v;
00566 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
00567 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
00568 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
00569 int scale, qindex, bits, steps, k, l, m, b;
00570
00571
00572 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
00573 s->sample_rate, s->lsf);
00574 sblimit = ff_mpa_sblimit_table[table];
00575 alloc_table = ff_mpa_alloc_tables[table];
00576
00577 if (s->mode == MPA_JSTEREO)
00578 bound = (s->mode_ext + 1) * 4;
00579 else
00580 bound = sblimit;
00581
00582 av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
00583
00584
00585 if (bound > sblimit)
00586 bound = sblimit;
00587
00588
00589 j = 0;
00590 for (i = 0; i < bound; i++) {
00591 bit_alloc_bits = alloc_table[j];
00592 for (ch = 0; ch < s->nb_channels; ch++)
00593 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
00594 j += 1 << bit_alloc_bits;
00595 }
00596 for (i = bound; i < sblimit; i++) {
00597 bit_alloc_bits = alloc_table[j];
00598 v = get_bits(&s->gb, bit_alloc_bits);
00599 bit_alloc[0][i] = v;
00600 bit_alloc[1][i] = v;
00601 j += 1 << bit_alloc_bits;
00602 }
00603
00604
00605 for (i = 0; i < sblimit; i++) {
00606 for (ch = 0; ch < s->nb_channels; ch++) {
00607 if (bit_alloc[ch][i])
00608 scale_code[ch][i] = get_bits(&s->gb, 2);
00609 }
00610 }
00611
00612
00613 for (i = 0; i < sblimit; i++) {
00614 for (ch = 0; ch < s->nb_channels; ch++) {
00615 if (bit_alloc[ch][i]) {
00616 sf = scale_factors[ch][i];
00617 switch (scale_code[ch][i]) {
00618 default:
00619 case 0:
00620 sf[0] = get_bits(&s->gb, 6);
00621 sf[1] = get_bits(&s->gb, 6);
00622 sf[2] = get_bits(&s->gb, 6);
00623 break;
00624 case 2:
00625 sf[0] = get_bits(&s->gb, 6);
00626 sf[1] = sf[0];
00627 sf[2] = sf[0];
00628 break;
00629 case 1:
00630 sf[0] = get_bits(&s->gb, 6);
00631 sf[2] = get_bits(&s->gb, 6);
00632 sf[1] = sf[0];
00633 break;
00634 case 3:
00635 sf[0] = get_bits(&s->gb, 6);
00636 sf[2] = get_bits(&s->gb, 6);
00637 sf[1] = sf[2];
00638 break;
00639 }
00640 }
00641 }
00642 }
00643
00644
00645 for (k = 0; k < 3; k++) {
00646 for (l = 0; l < 12; l += 3) {
00647 j = 0;
00648 for (i = 0; i < bound; i++) {
00649 bit_alloc_bits = alloc_table[j];
00650 for (ch = 0; ch < s->nb_channels; ch++) {
00651 b = bit_alloc[ch][i];
00652 if (b) {
00653 scale = scale_factors[ch][i][k];
00654 qindex = alloc_table[j+b];
00655 bits = ff_mpa_quant_bits[qindex];
00656 if (bits < 0) {
00657 int v2;
00658
00659 v = get_bits(&s->gb, -bits);
00660 v2 = division_tabs[qindex][v];
00661 steps = ff_mpa_quant_steps[qindex];
00662
00663 s->sb_samples[ch][k * 12 + l + 0][i] =
00664 l2_unscale_group(steps, v2 & 15, scale);
00665 s->sb_samples[ch][k * 12 + l + 1][i] =
00666 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
00667 s->sb_samples[ch][k * 12 + l + 2][i] =
00668 l2_unscale_group(steps, v2 >> 8 , scale);
00669 } else {
00670 for (m = 0; m < 3; m++) {
00671 v = get_bits(&s->gb, bits);
00672 v = l1_unscale(bits - 1, v, scale);
00673 s->sb_samples[ch][k * 12 + l + m][i] = v;
00674 }
00675 }
00676 } else {
00677 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00678 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00679 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00680 }
00681 }
00682
00683 j += 1 << bit_alloc_bits;
00684 }
00685
00686 for (i = bound; i < sblimit; i++) {
00687 bit_alloc_bits = alloc_table[j];
00688 b = bit_alloc[0][i];
00689 if (b) {
00690 int mant, scale0, scale1;
00691 scale0 = scale_factors[0][i][k];
00692 scale1 = scale_factors[1][i][k];
00693 qindex = alloc_table[j+b];
00694 bits = ff_mpa_quant_bits[qindex];
00695 if (bits < 0) {
00696
00697 v = get_bits(&s->gb, -bits);
00698 steps = ff_mpa_quant_steps[qindex];
00699 mant = v % steps;
00700 v = v / steps;
00701 s->sb_samples[0][k * 12 + l + 0][i] =
00702 l2_unscale_group(steps, mant, scale0);
00703 s->sb_samples[1][k * 12 + l + 0][i] =
00704 l2_unscale_group(steps, mant, scale1);
00705 mant = v % steps;
00706 v = v / steps;
00707 s->sb_samples[0][k * 12 + l + 1][i] =
00708 l2_unscale_group(steps, mant, scale0);
00709 s->sb_samples[1][k * 12 + l + 1][i] =
00710 l2_unscale_group(steps, mant, scale1);
00711 s->sb_samples[0][k * 12 + l + 2][i] =
00712 l2_unscale_group(steps, v, scale0);
00713 s->sb_samples[1][k * 12 + l + 2][i] =
00714 l2_unscale_group(steps, v, scale1);
00715 } else {
00716 for (m = 0; m < 3; m++) {
00717 mant = get_bits(&s->gb, bits);
00718 s->sb_samples[0][k * 12 + l + m][i] =
00719 l1_unscale(bits - 1, mant, scale0);
00720 s->sb_samples[1][k * 12 + l + m][i] =
00721 l1_unscale(bits - 1, mant, scale1);
00722 }
00723 }
00724 } else {
00725 s->sb_samples[0][k * 12 + l + 0][i] = 0;
00726 s->sb_samples[0][k * 12 + l + 1][i] = 0;
00727 s->sb_samples[0][k * 12 + l + 2][i] = 0;
00728 s->sb_samples[1][k * 12 + l + 0][i] = 0;
00729 s->sb_samples[1][k * 12 + l + 1][i] = 0;
00730 s->sb_samples[1][k * 12 + l + 2][i] = 0;
00731 }
00732
00733 j += 1 << bit_alloc_bits;
00734 }
00735
00736 for (i = sblimit; i < SBLIMIT; i++) {
00737 for (ch = 0; ch < s->nb_channels; ch++) {
00738 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00739 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00740 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00741 }
00742 }
00743 }
00744 }
00745 return 3 * 12;
00746 }
00747
00748 #define SPLIT(dst,sf,n) \
00749 if (n == 3) { \
00750 int m = (sf * 171) >> 9; \
00751 dst = sf - 3 * m; \
00752 sf = m; \
00753 } else if (n == 4) { \
00754 dst = sf & 3; \
00755 sf >>= 2; \
00756 } else if (n == 5) { \
00757 int m = (sf * 205) >> 10; \
00758 dst = sf - 5 * m; \
00759 sf = m; \
00760 } else if (n == 6) { \
00761 int m = (sf * 171) >> 10; \
00762 dst = sf - 6 * m; \
00763 sf = m; \
00764 } else { \
00765 dst = 0; \
00766 }
00767
00768 static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
00769 int n3)
00770 {
00771 SPLIT(slen[3], sf, n3)
00772 SPLIT(slen[2], sf, n2)
00773 SPLIT(slen[1], sf, n1)
00774 slen[0] = sf;
00775 }
00776
00777 static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
00778 int16_t *exponents)
00779 {
00780 const uint8_t *bstab, *pretab;
00781 int len, i, j, k, l, v0, shift, gain, gains[3];
00782 int16_t *exp_ptr;
00783
00784 exp_ptr = exponents;
00785 gain = g->global_gain - 210;
00786 shift = g->scalefac_scale + 1;
00787
00788 bstab = band_size_long[s->sample_rate_index];
00789 pretab = mpa_pretab[g->preflag];
00790 for (i = 0; i < g->long_end; i++) {
00791 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
00792 len = bstab[i];
00793 for (j = len; j > 0; j--)
00794 *exp_ptr++ = v0;
00795 }
00796
00797 if (g->short_start < 13) {
00798 bstab = band_size_short[s->sample_rate_index];
00799 gains[0] = gain - (g->subblock_gain[0] << 3);
00800 gains[1] = gain - (g->subblock_gain[1] << 3);
00801 gains[2] = gain - (g->subblock_gain[2] << 3);
00802 k = g->long_end;
00803 for (i = g->short_start; i < 13; i++) {
00804 len = bstab[i];
00805 for (l = 0; l < 3; l++) {
00806 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
00807 for (j = len; j > 0; j--)
00808 *exp_ptr++ = v0;
00809 }
00810 }
00811 }
00812 }
00813
00814
00815 static inline int get_bitsz(GetBitContext *s, int n)
00816 {
00817 return n ? get_bits(s, n) : 0;
00818 }
00819
00820
00821 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
00822 int *end_pos2)
00823 {
00824 if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
00825 s->gb = s->in_gb;
00826 s->in_gb.buffer = NULL;
00827 assert((get_bits_count(&s->gb) & 7) == 0);
00828 skip_bits_long(&s->gb, *pos - *end_pos);
00829 *end_pos2 =
00830 *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
00831 *pos = get_bits_count(&s->gb);
00832 }
00833 }
00834
00835
00836
00837
00838
00839
00840
00841 #if CONFIG_FLOAT
00842 #define READ_FLIP_SIGN(dst,src) \
00843 v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
00844 AV_WN32A(dst, v);
00845 #else
00846 #define READ_FLIP_SIGN(dst,src) \
00847 v = -get_bits1(&s->gb); \
00848 *(dst) = (*(src) ^ v) - v;
00849 #endif
00850
00851 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
00852 int16_t *exponents, int end_pos2)
00853 {
00854 int s_index;
00855 int i;
00856 int last_pos, bits_left;
00857 VLC *vlc;
00858 int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
00859
00860
00861 s_index = 0;
00862 for (i = 0; i < 3; i++) {
00863 int j, k, l, linbits;
00864 j = g->region_size[i];
00865 if (j == 0)
00866 continue;
00867
00868 k = g->table_select[i];
00869 l = mpa_huff_data[k][0];
00870 linbits = mpa_huff_data[k][1];
00871 vlc = &huff_vlc[l];
00872
00873 if (!l) {
00874 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
00875 s_index += 2 * j;
00876 continue;
00877 }
00878
00879
00880 for (; j > 0; j--) {
00881 int exponent, x, y;
00882 int v;
00883 int pos = get_bits_count(&s->gb);
00884
00885 if (pos >= end_pos){
00886
00887 switch_buffer(s, &pos, &end_pos, &end_pos2);
00888
00889 if (pos >= end_pos)
00890 break;
00891 }
00892 y = get_vlc2(&s->gb, vlc->table, 7, 3);
00893
00894 if (!y) {
00895 g->sb_hybrid[s_index ] =
00896 g->sb_hybrid[s_index+1] = 0;
00897 s_index += 2;
00898 continue;
00899 }
00900
00901 exponent= exponents[s_index];
00902
00903 av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
00904 i, g->region_size[i] - j, x, y, exponent);
00905 if (y & 16) {
00906 x = y >> 5;
00907 y = y & 0x0f;
00908 if (x < 15) {
00909 READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
00910 } else {
00911 x += get_bitsz(&s->gb, linbits);
00912 v = l3_unscale(x, exponent);
00913 if (get_bits1(&s->gb))
00914 v = -v;
00915 g->sb_hybrid[s_index] = v;
00916 }
00917 if (y < 15) {
00918 READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
00919 } else {
00920 y += get_bitsz(&s->gb, linbits);
00921 v = l3_unscale(y, exponent);
00922 if (get_bits1(&s->gb))
00923 v = -v;
00924 g->sb_hybrid[s_index+1] = v;
00925 }
00926 } else {
00927 x = y >> 5;
00928 y = y & 0x0f;
00929 x += y;
00930 if (x < 15) {
00931 READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
00932 } else {
00933 x += get_bitsz(&s->gb, linbits);
00934 v = l3_unscale(x, exponent);
00935 if (get_bits1(&s->gb))
00936 v = -v;
00937 g->sb_hybrid[s_index+!!y] = v;
00938 }
00939 g->sb_hybrid[s_index + !y] = 0;
00940 }
00941 s_index += 2;
00942 }
00943 }
00944
00945
00946 vlc = &huff_quad_vlc[g->count1table_select];
00947 last_pos = 0;
00948 while (s_index <= 572) {
00949 int pos, code;
00950 pos = get_bits_count(&s->gb);
00951 if (pos >= end_pos) {
00952 if (pos > end_pos2 && last_pos) {
00953
00954
00955 s_index -= 4;
00956 skip_bits_long(&s->gb, last_pos - pos);
00957 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
00958 if(s->err_recognition & AV_EF_BITSTREAM)
00959 s_index=0;
00960 break;
00961 }
00962
00963 switch_buffer(s, &pos, &end_pos, &end_pos2);
00964
00965 if (pos >= end_pos)
00966 break;
00967 }
00968 last_pos = pos;
00969
00970 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
00971 av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
00972 g->sb_hybrid[s_index+0] =
00973 g->sb_hybrid[s_index+1] =
00974 g->sb_hybrid[s_index+2] =
00975 g->sb_hybrid[s_index+3] = 0;
00976 while (code) {
00977 static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
00978 int v;
00979 int pos = s_index + idxtab[code];
00980 code ^= 8 >> idxtab[code];
00981 READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
00982 }
00983 s_index += 4;
00984 }
00985
00986 bits_left = end_pos2 - get_bits_count(&s->gb);
00987
00988 if (bits_left < 0 && (s->err_recognition & AV_EF_BUFFER)) {
00989 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
00990 s_index=0;
00991 } else if (bits_left > 0 && (s->err_recognition & AV_EF_BUFFER)) {
00992 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
00993 s_index = 0;
00994 }
00995 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
00996 skip_bits_long(&s->gb, bits_left);
00997
00998 i = get_bits_count(&s->gb);
00999 switch_buffer(s, &i, &end_pos, &end_pos2);
01000
01001 return 0;
01002 }
01003
01004
01005
01006
01007 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
01008 {
01009 int i, j, len;
01010 INTFLOAT *ptr, *dst, *ptr1;
01011 INTFLOAT tmp[576];
01012
01013 if (g->block_type != 2)
01014 return;
01015
01016 if (g->switch_point) {
01017 if (s->sample_rate_index != 8)
01018 ptr = g->sb_hybrid + 36;
01019 else
01020 ptr = g->sb_hybrid + 48;
01021 } else {
01022 ptr = g->sb_hybrid;
01023 }
01024
01025 for (i = g->short_start; i < 13; i++) {
01026 len = band_size_short[s->sample_rate_index][i];
01027 ptr1 = ptr;
01028 dst = tmp;
01029 for (j = len; j > 0; j--) {
01030 *dst++ = ptr[0*len];
01031 *dst++ = ptr[1*len];
01032 *dst++ = ptr[2*len];
01033 ptr++;
01034 }
01035 ptr += 2 * len;
01036 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
01037 }
01038 }
01039
01040 #define ISQRT2 FIXR(0.70710678118654752440)
01041
01042 static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
01043 {
01044 int i, j, k, l;
01045 int sf_max, sf, len, non_zero_found;
01046 INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
01047 int non_zero_found_short[3];
01048
01049
01050 if (s->mode_ext & MODE_EXT_I_STEREO) {
01051 if (!s->lsf) {
01052 is_tab = is_table;
01053 sf_max = 7;
01054 } else {
01055 is_tab = is_table_lsf[g1->scalefac_compress & 1];
01056 sf_max = 16;
01057 }
01058
01059 tab0 = g0->sb_hybrid + 576;
01060 tab1 = g1->sb_hybrid + 576;
01061
01062 non_zero_found_short[0] = 0;
01063 non_zero_found_short[1] = 0;
01064 non_zero_found_short[2] = 0;
01065 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
01066 for (i = 12; i >= g1->short_start; i--) {
01067
01068 if (i != 11)
01069 k -= 3;
01070 len = band_size_short[s->sample_rate_index][i];
01071 for (l = 2; l >= 0; l--) {
01072 tab0 -= len;
01073 tab1 -= len;
01074 if (!non_zero_found_short[l]) {
01075
01076 for (j = 0; j < len; j++) {
01077 if (tab1[j] != 0) {
01078 non_zero_found_short[l] = 1;
01079 goto found1;
01080 }
01081 }
01082 sf = g1->scale_factors[k + l];
01083 if (sf >= sf_max)
01084 goto found1;
01085
01086 v1 = is_tab[0][sf];
01087 v2 = is_tab[1][sf];
01088 for (j = 0; j < len; j++) {
01089 tmp0 = tab0[j];
01090 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01091 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01092 }
01093 } else {
01094 found1:
01095 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01096
01097
01098 for (j = 0; j < len; j++) {
01099 tmp0 = tab0[j];
01100 tmp1 = tab1[j];
01101 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01102 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01103 }
01104 }
01105 }
01106 }
01107 }
01108
01109 non_zero_found = non_zero_found_short[0] |
01110 non_zero_found_short[1] |
01111 non_zero_found_short[2];
01112
01113 for (i = g1->long_end - 1;i >= 0;i--) {
01114 len = band_size_long[s->sample_rate_index][i];
01115 tab0 -= len;
01116 tab1 -= len;
01117
01118 if (!non_zero_found) {
01119 for (j = 0; j < len; j++) {
01120 if (tab1[j] != 0) {
01121 non_zero_found = 1;
01122 goto found2;
01123 }
01124 }
01125
01126 k = (i == 21) ? 20 : i;
01127 sf = g1->scale_factors[k];
01128 if (sf >= sf_max)
01129 goto found2;
01130 v1 = is_tab[0][sf];
01131 v2 = is_tab[1][sf];
01132 for (j = 0; j < len; j++) {
01133 tmp0 = tab0[j];
01134 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01135 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01136 }
01137 } else {
01138 found2:
01139 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01140
01141
01142 for (j = 0; j < len; j++) {
01143 tmp0 = tab0[j];
01144 tmp1 = tab1[j];
01145 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01146 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01147 }
01148 }
01149 }
01150 }
01151 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
01152
01153
01154
01155 tab0 = g0->sb_hybrid;
01156 tab1 = g1->sb_hybrid;
01157 for (i = 0; i < 576; i++) {
01158 tmp0 = tab0[i];
01159 tmp1 = tab1[i];
01160 tab0[i] = tmp0 + tmp1;
01161 tab1[i] = tmp0 - tmp1;
01162 }
01163 }
01164 }
01165
01166 #if CONFIG_FLOAT
01167 #define AA(j) do { \
01168 float tmp0 = ptr[-1-j]; \
01169 float tmp1 = ptr[ j]; \
01170 ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
01171 ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
01172 } while (0)
01173 #else
01174 #define AA(j) do { \
01175 int tmp0 = ptr[-1-j]; \
01176 int tmp1 = ptr[ j]; \
01177 int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
01178 ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
01179 ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
01180 } while (0)
01181 #endif
01182
01183 static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
01184 {
01185 INTFLOAT *ptr;
01186 int n, i;
01187
01188
01189 if (g->block_type == 2) {
01190 if (!g->switch_point)
01191 return;
01192
01193 n = 1;
01194 } else {
01195 n = SBLIMIT - 1;
01196 }
01197
01198 ptr = g->sb_hybrid + 18;
01199 for (i = n; i > 0; i--) {
01200 AA(0);
01201 AA(1);
01202 AA(2);
01203 AA(3);
01204 AA(4);
01205 AA(5);
01206 AA(6);
01207 AA(7);
01208
01209 ptr += 18;
01210 }
01211 }
01212
01213 static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
01214 INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
01215 {
01216 INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
01217 INTFLOAT out2[12];
01218 int i, j, mdct_long_end, sblimit;
01219
01220
01221 ptr = g->sb_hybrid + 576;
01222 ptr1 = g->sb_hybrid + 2 * 18;
01223 while (ptr >= ptr1) {
01224 int32_t *p;
01225 ptr -= 6;
01226 p = (int32_t*)ptr;
01227 if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
01228 break;
01229 }
01230 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
01231
01232 if (g->block_type == 2) {
01233
01234 if (g->switch_point)
01235 mdct_long_end = 2;
01236 else
01237 mdct_long_end = 0;
01238 } else {
01239 mdct_long_end = sblimit;
01240 }
01241
01242 s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
01243 mdct_long_end, g->switch_point,
01244 g->block_type);
01245
01246 buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
01247 ptr = g->sb_hybrid + 18 * mdct_long_end;
01248
01249 for (j = mdct_long_end; j < sblimit; j++) {
01250
01251 win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
01252 out_ptr = sb_samples + j;
01253
01254 for (i = 0; i < 6; i++) {
01255 *out_ptr = buf[4*i];
01256 out_ptr += SBLIMIT;
01257 }
01258 imdct12(out2, ptr + 0);
01259 for (i = 0; i < 6; i++) {
01260 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
01261 buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
01262 out_ptr += SBLIMIT;
01263 }
01264 imdct12(out2, ptr + 1);
01265 for (i = 0; i < 6; i++) {
01266 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
01267 buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
01268 out_ptr += SBLIMIT;
01269 }
01270 imdct12(out2, ptr + 2);
01271 for (i = 0; i < 6; i++) {
01272 buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
01273 buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
01274 buf[4*(i + 6*2)] = 0;
01275 }
01276 ptr += 18;
01277 buf += (j&3) != 3 ? 1 : (4*18-3);
01278 }
01279
01280 for (j = sblimit; j < SBLIMIT; j++) {
01281
01282 out_ptr = sb_samples + j;
01283 for (i = 0; i < 18; i++) {
01284 *out_ptr = buf[4*i];
01285 buf[4*i] = 0;
01286 out_ptr += SBLIMIT;
01287 }
01288 buf += (j&3) != 3 ? 1 : (4*18-3);
01289 }
01290 }
01291
01292
01293 static int mp_decode_layer3(MPADecodeContext *s)
01294 {
01295 int nb_granules, main_data_begin;
01296 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
01297 GranuleDef *g;
01298 int16_t exponents[576];
01299
01300
01301 if (s->lsf) {
01302 main_data_begin = get_bits(&s->gb, 8);
01303 skip_bits(&s->gb, s->nb_channels);
01304 nb_granules = 1;
01305 } else {
01306 main_data_begin = get_bits(&s->gb, 9);
01307 if (s->nb_channels == 2)
01308 skip_bits(&s->gb, 3);
01309 else
01310 skip_bits(&s->gb, 5);
01311 nb_granules = 2;
01312 for (ch = 0; ch < s->nb_channels; ch++) {
01313 s->granules[ch][0].scfsi = 0;
01314 s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
01315 }
01316 }
01317
01318 for (gr = 0; gr < nb_granules; gr++) {
01319 for (ch = 0; ch < s->nb_channels; ch++) {
01320 av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
01321 g = &s->granules[ch][gr];
01322 g->part2_3_length = get_bits(&s->gb, 12);
01323 g->big_values = get_bits(&s->gb, 9);
01324 if (g->big_values > 288) {
01325 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
01326 return AVERROR_INVALIDDATA;
01327 }
01328
01329 g->global_gain = get_bits(&s->gb, 8);
01330
01331
01332 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
01333 MODE_EXT_MS_STEREO)
01334 g->global_gain -= 2;
01335 if (s->lsf)
01336 g->scalefac_compress = get_bits(&s->gb, 9);
01337 else
01338 g->scalefac_compress = get_bits(&s->gb, 4);
01339 blocksplit_flag = get_bits1(&s->gb);
01340 if (blocksplit_flag) {
01341 g->block_type = get_bits(&s->gb, 2);
01342 if (g->block_type == 0) {
01343 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
01344 return AVERROR_INVALIDDATA;
01345 }
01346 g->switch_point = get_bits1(&s->gb);
01347 for (i = 0; i < 2; i++)
01348 g->table_select[i] = get_bits(&s->gb, 5);
01349 for (i = 0; i < 3; i++)
01350 g->subblock_gain[i] = get_bits(&s->gb, 3);
01351 ff_init_short_region(s, g);
01352 } else {
01353 int region_address1, region_address2;
01354 g->block_type = 0;
01355 g->switch_point = 0;
01356 for (i = 0; i < 3; i++)
01357 g->table_select[i] = get_bits(&s->gb, 5);
01358
01359 region_address1 = get_bits(&s->gb, 4);
01360 region_address2 = get_bits(&s->gb, 3);
01361 av_dlog(s->avctx, "region1=%d region2=%d\n",
01362 region_address1, region_address2);
01363 ff_init_long_region(s, g, region_address1, region_address2);
01364 }
01365 ff_region_offset2size(g);
01366 ff_compute_band_indexes(s, g);
01367
01368 g->preflag = 0;
01369 if (!s->lsf)
01370 g->preflag = get_bits1(&s->gb);
01371 g->scalefac_scale = get_bits1(&s->gb);
01372 g->count1table_select = get_bits1(&s->gb);
01373 av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
01374 g->block_type, g->switch_point);
01375 }
01376 }
01377
01378 if (!s->adu_mode) {
01379 int skip;
01380 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
01381 assert((get_bits_count(&s->gb) & 7) == 0);
01382
01383 av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
01384
01385
01386 memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
01387 s->in_gb = s->gb;
01388 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
01389 #if !UNCHECKED_BITSTREAM_READER
01390 s->gb.size_in_bits_plus8 += EXTRABYTES * 8;
01391 #endif
01392 s->last_buf_size <<= 3;
01393 for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
01394 for (ch = 0; ch < s->nb_channels; ch++) {
01395 g = &s->granules[ch][gr];
01396 s->last_buf_size += g->part2_3_length;
01397 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
01398 }
01399 }
01400 skip = s->last_buf_size - 8 * main_data_begin;
01401 if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
01402 skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
01403 s->gb = s->in_gb;
01404 s->in_gb.buffer = NULL;
01405 } else {
01406 skip_bits_long(&s->gb, skip);
01407 }
01408 } else {
01409 gr = 0;
01410 }
01411
01412 for (; gr < nb_granules; gr++) {
01413 for (ch = 0; ch < s->nb_channels; ch++) {
01414 g = &s->granules[ch][gr];
01415 bits_pos = get_bits_count(&s->gb);
01416
01417 if (!s->lsf) {
01418 uint8_t *sc;
01419 int slen, slen1, slen2;
01420
01421
01422 slen1 = slen_table[0][g->scalefac_compress];
01423 slen2 = slen_table[1][g->scalefac_compress];
01424 av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
01425 if (g->block_type == 2) {
01426 n = g->switch_point ? 17 : 18;
01427 j = 0;
01428 if (slen1) {
01429 for (i = 0; i < n; i++)
01430 g->scale_factors[j++] = get_bits(&s->gb, slen1);
01431 } else {
01432 for (i = 0; i < n; i++)
01433 g->scale_factors[j++] = 0;
01434 }
01435 if (slen2) {
01436 for (i = 0; i < 18; i++)
01437 g->scale_factors[j++] = get_bits(&s->gb, slen2);
01438 for (i = 0; i < 3; i++)
01439 g->scale_factors[j++] = 0;
01440 } else {
01441 for (i = 0; i < 21; i++)
01442 g->scale_factors[j++] = 0;
01443 }
01444 } else {
01445 sc = s->granules[ch][0].scale_factors;
01446 j = 0;
01447 for (k = 0; k < 4; k++) {
01448 n = k == 0 ? 6 : 5;
01449 if ((g->scfsi & (0x8 >> k)) == 0) {
01450 slen = (k < 2) ? slen1 : slen2;
01451 if (slen) {
01452 for (i = 0; i < n; i++)
01453 g->scale_factors[j++] = get_bits(&s->gb, slen);
01454 } else {
01455 for (i = 0; i < n; i++)
01456 g->scale_factors[j++] = 0;
01457 }
01458 } else {
01459
01460 for (i = 0; i < n; i++) {
01461 g->scale_factors[j] = sc[j];
01462 j++;
01463 }
01464 }
01465 }
01466 g->scale_factors[j++] = 0;
01467 }
01468 } else {
01469 int tindex, tindex2, slen[4], sl, sf;
01470
01471
01472 if (g->block_type == 2)
01473 tindex = g->switch_point ? 2 : 1;
01474 else
01475 tindex = 0;
01476
01477 sf = g->scalefac_compress;
01478 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
01479
01480 sf >>= 1;
01481 if (sf < 180) {
01482 lsf_sf_expand(slen, sf, 6, 6, 0);
01483 tindex2 = 3;
01484 } else if (sf < 244) {
01485 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
01486 tindex2 = 4;
01487 } else {
01488 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
01489 tindex2 = 5;
01490 }
01491 } else {
01492
01493 if (sf < 400) {
01494 lsf_sf_expand(slen, sf, 5, 4, 4);
01495 tindex2 = 0;
01496 } else if (sf < 500) {
01497 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
01498 tindex2 = 1;
01499 } else {
01500 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
01501 tindex2 = 2;
01502 g->preflag = 1;
01503 }
01504 }
01505
01506 j = 0;
01507 for (k = 0; k < 4; k++) {
01508 n = lsf_nsf_table[tindex2][tindex][k];
01509 sl = slen[k];
01510 if (sl) {
01511 for (i = 0; i < n; i++)
01512 g->scale_factors[j++] = get_bits(&s->gb, sl);
01513 } else {
01514 for (i = 0; i < n; i++)
01515 g->scale_factors[j++] = 0;
01516 }
01517 }
01518
01519 for (; j < 40; j++)
01520 g->scale_factors[j] = 0;
01521 }
01522
01523 exponents_from_scale_factors(s, g, exponents);
01524
01525
01526 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
01527 }
01528
01529 if (s->nb_channels == 2)
01530 compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
01531
01532 for (ch = 0; ch < s->nb_channels; ch++) {
01533 g = &s->granules[ch][gr];
01534
01535 reorder_block(s, g);
01536 compute_antialias(s, g);
01537 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
01538 }
01539 }
01540 if (get_bits_count(&s->gb) < 0)
01541 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
01542 return nb_granules * 18;
01543 }
01544
01545 static int mp_decode_frame(MPADecodeContext *s, OUT_INT *samples,
01546 const uint8_t *buf, int buf_size)
01547 {
01548 int i, nb_frames, ch, ret;
01549 OUT_INT *samples_ptr;
01550
01551 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
01552
01553
01554 if (s->error_protection)
01555 skip_bits(&s->gb, 16);
01556
01557 switch(s->layer) {
01558 case 1:
01559 s->avctx->frame_size = 384;
01560 nb_frames = mp_decode_layer1(s);
01561 break;
01562 case 2:
01563 s->avctx->frame_size = 1152;
01564 nb_frames = mp_decode_layer2(s);
01565 break;
01566 case 3:
01567 s->avctx->frame_size = s->lsf ? 576 : 1152;
01568 default:
01569 nb_frames = mp_decode_layer3(s);
01570
01571 s->last_buf_size=0;
01572 if (s->in_gb.buffer) {
01573 align_get_bits(&s->gb);
01574 i = get_bits_left(&s->gb)>>3;
01575 if (i >= 0 && i <= BACKSTEP_SIZE) {
01576 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
01577 s->last_buf_size=i;
01578 } else
01579 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
01580 s->gb = s->in_gb;
01581 s->in_gb.buffer = NULL;
01582 }
01583
01584 align_get_bits(&s->gb);
01585 assert((get_bits_count(&s->gb) & 7) == 0);
01586 i = get_bits_left(&s->gb) >> 3;
01587
01588 if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
01589 if (i < 0)
01590 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
01591 i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
01592 }
01593 assert(i <= buf_size - HEADER_SIZE && i >= 0);
01594 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
01595 s->last_buf_size += i;
01596 }
01597
01598
01599 if (!samples) {
01600 s->frame.nb_samples = s->avctx->frame_size;
01601 if ((ret = s->avctx->get_buffer(s->avctx, &s->frame)) < 0) {
01602 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01603 return ret;
01604 }
01605 samples = (OUT_INT *)s->frame.data[0];
01606 }
01607
01608
01609 for (ch = 0; ch < s->nb_channels; ch++) {
01610 samples_ptr = samples + ch;
01611 for (i = 0; i < nb_frames; i++) {
01612 RENAME(ff_mpa_synth_filter)(
01613 &s->mpadsp,
01614 s->synth_buf[ch], &(s->synth_buf_offset[ch]),
01615 RENAME(ff_mpa_synth_window), &s->dither_state,
01616 samples_ptr, s->nb_channels,
01617 s->sb_samples[ch][i]);
01618 samples_ptr += 32 * s->nb_channels;
01619 }
01620 }
01621
01622 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
01623 }
01624
01625 static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
01626 AVPacket *avpkt)
01627 {
01628 const uint8_t *buf = avpkt->data;
01629 int buf_size = avpkt->size;
01630 MPADecodeContext *s = avctx->priv_data;
01631 uint32_t header;
01632 int out_size;
01633
01634 if (buf_size < HEADER_SIZE)
01635 return AVERROR_INVALIDDATA;
01636
01637 header = AV_RB32(buf);
01638 if (ff_mpa_check_header(header) < 0) {
01639 av_log(avctx, AV_LOG_ERROR, "Header missing\n");
01640 return AVERROR_INVALIDDATA;
01641 }
01642
01643 if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
01644
01645 s->frame_size = -1;
01646 return AVERROR_INVALIDDATA;
01647 }
01648
01649 avctx->channels = s->nb_channels;
01650 avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
01651 if (!avctx->bit_rate)
01652 avctx->bit_rate = s->bit_rate;
01653 avctx->sub_id = s->layer;
01654
01655 if (s->frame_size <= 0 || s->frame_size > buf_size) {
01656 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
01657 return AVERROR_INVALIDDATA;
01658 } else if (s->frame_size < buf_size) {
01659 av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
01660 buf_size= s->frame_size;
01661 }
01662
01663 out_size = mp_decode_frame(s, NULL, buf, buf_size);
01664 if (out_size >= 0) {
01665 *got_frame_ptr = 1;
01666 *(AVFrame *)data = s->frame;
01667 avctx->sample_rate = s->sample_rate;
01668
01669 } else {
01670 av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
01671
01672
01673
01674
01675 *got_frame_ptr = 0;
01676 if (buf_size == avpkt->size)
01677 return out_size;
01678 }
01679 s->frame_size = 0;
01680 return buf_size;
01681 }
01682
01683 static void flush(AVCodecContext *avctx)
01684 {
01685 MPADecodeContext *s = avctx->priv_data;
01686 memset(s->synth_buf, 0, sizeof(s->synth_buf));
01687 s->last_buf_size = 0;
01688 }
01689
01690 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
01691 static int decode_frame_adu(AVCodecContext *avctx, void *data,
01692 int *got_frame_ptr, AVPacket *avpkt)
01693 {
01694 const uint8_t *buf = avpkt->data;
01695 int buf_size = avpkt->size;
01696 MPADecodeContext *s = avctx->priv_data;
01697 uint32_t header;
01698 int len, out_size;
01699
01700 len = buf_size;
01701
01702
01703 if (buf_size < HEADER_SIZE) {
01704 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
01705 return AVERROR_INVALIDDATA;
01706 }
01707
01708
01709 if (len > MPA_MAX_CODED_FRAME_SIZE)
01710 len = MPA_MAX_CODED_FRAME_SIZE;
01711
01712
01713 header = AV_RB32(buf) | 0xffe00000;
01714
01715 if (ff_mpa_check_header(header) < 0) {
01716 av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
01717 return AVERROR_INVALIDDATA;
01718 }
01719
01720 avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
01721
01722 avctx->sample_rate = s->sample_rate;
01723 avctx->channels = s->nb_channels;
01724 if (!avctx->bit_rate)
01725 avctx->bit_rate = s->bit_rate;
01726 avctx->sub_id = s->layer;
01727
01728 s->frame_size = len;
01729
01730 #if FF_API_PARSE_FRAME
01731 if (avctx->parse_only)
01732 out_size = buf_size;
01733 else
01734 #endif
01735 out_size = mp_decode_frame(s, NULL, buf, buf_size);
01736
01737 *got_frame_ptr = 1;
01738 *(AVFrame *)data = s->frame;
01739
01740 return buf_size;
01741 }
01742 #endif
01743
01744 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
01745
01749 typedef struct MP3On4DecodeContext {
01750 AVFrame *frame;
01751 int frames;
01752 int syncword;
01753 const uint8_t *coff;
01754 MPADecodeContext *mp3decctx[5];
01755 OUT_INT *decoded_buf;
01756 } MP3On4DecodeContext;
01757
01758 #include "mpeg4audio.h"
01759
01760
01761
01762
01763 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
01764
01765
01766 static const uint8_t chan_offset[8][5] = {
01767 { 0 },
01768 { 0 },
01769 { 0 },
01770 { 2, 0 },
01771 { 2, 0, 3 },
01772 { 2, 0, 3 },
01773 { 2, 0, 4, 3 },
01774 { 2, 0, 6, 4, 3 },
01775 };
01776
01777
01778 static const int16_t chan_layout[8] = {
01779 0,
01780 AV_CH_LAYOUT_MONO,
01781 AV_CH_LAYOUT_STEREO,
01782 AV_CH_LAYOUT_SURROUND,
01783 AV_CH_LAYOUT_4POINT0,
01784 AV_CH_LAYOUT_5POINT0,
01785 AV_CH_LAYOUT_5POINT1,
01786 AV_CH_LAYOUT_7POINT1
01787 };
01788
01789 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
01790 {
01791 MP3On4DecodeContext *s = avctx->priv_data;
01792 int i;
01793
01794 for (i = 0; i < s->frames; i++)
01795 av_free(s->mp3decctx[i]);
01796
01797 av_freep(&s->decoded_buf);
01798
01799 return 0;
01800 }
01801
01802
01803 static int decode_init_mp3on4(AVCodecContext * avctx)
01804 {
01805 MP3On4DecodeContext *s = avctx->priv_data;
01806 MPEG4AudioConfig cfg;
01807 int i;
01808
01809 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
01810 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
01811 return AVERROR_INVALIDDATA;
01812 }
01813
01814 avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
01815 avctx->extradata_size * 8, 1);
01816 if (!cfg.chan_config || cfg.chan_config > 7) {
01817 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
01818 return AVERROR_INVALIDDATA;
01819 }
01820 s->frames = mp3Frames[cfg.chan_config];
01821 s->coff = chan_offset[cfg.chan_config];
01822 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
01823 avctx->channel_layout = chan_layout[cfg.chan_config];
01824
01825 if (cfg.sample_rate < 16000)
01826 s->syncword = 0xffe00000;
01827 else
01828 s->syncword = 0xfff00000;
01829
01830
01831
01832
01833
01834
01835
01836 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
01837 if (!s->mp3decctx[0])
01838 goto alloc_fail;
01839
01840 avctx->priv_data = s->mp3decctx[0];
01841 decode_init(avctx);
01842 s->frame = avctx->coded_frame;
01843
01844 avctx->priv_data = s;
01845 s->mp3decctx[0]->adu_mode = 1;
01846
01847
01848
01849
01850 for (i = 1; i < s->frames; i++) {
01851 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
01852 if (!s->mp3decctx[i])
01853 goto alloc_fail;
01854 s->mp3decctx[i]->adu_mode = 1;
01855 s->mp3decctx[i]->avctx = avctx;
01856 s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
01857 }
01858
01859
01860 if (s->frames > 1) {
01861 s->decoded_buf = av_malloc(MPA_FRAME_SIZE * MPA_MAX_CHANNELS *
01862 sizeof(*s->decoded_buf));
01863 if (!s->decoded_buf)
01864 goto alloc_fail;
01865 }
01866
01867 return 0;
01868 alloc_fail:
01869 decode_close_mp3on4(avctx);
01870 return AVERROR(ENOMEM);
01871 }
01872
01873
01874 static void flush_mp3on4(AVCodecContext *avctx)
01875 {
01876 int i;
01877 MP3On4DecodeContext *s = avctx->priv_data;
01878
01879 for (i = 0; i < s->frames; i++) {
01880 MPADecodeContext *m = s->mp3decctx[i];
01881 memset(m->synth_buf, 0, sizeof(m->synth_buf));
01882 m->last_buf_size = 0;
01883 }
01884 }
01885
01886
01887 static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
01888 int *got_frame_ptr, AVPacket *avpkt)
01889 {
01890 const uint8_t *buf = avpkt->data;
01891 int buf_size = avpkt->size;
01892 MP3On4DecodeContext *s = avctx->priv_data;
01893 MPADecodeContext *m;
01894 int fsize, len = buf_size, out_size = 0;
01895 uint32_t header;
01896 OUT_INT *out_samples;
01897 OUT_INT *outptr, *bp;
01898 int fr, j, n, ch, ret;
01899
01900
01901 s->frame->nb_samples = MPA_FRAME_SIZE;
01902 if ((ret = avctx->get_buffer(avctx, s->frame)) < 0) {
01903 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01904 return ret;
01905 }
01906 out_samples = (OUT_INT *)s->frame->data[0];
01907
01908
01909 if (buf_size < HEADER_SIZE)
01910 return AVERROR_INVALIDDATA;
01911
01912
01913 outptr = s->frames == 1 ? out_samples : s->decoded_buf;
01914
01915 avctx->bit_rate = 0;
01916
01917 ch = 0;
01918 for (fr = 0; fr < s->frames; fr++) {
01919 fsize = AV_RB16(buf) >> 4;
01920 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
01921 m = s->mp3decctx[fr];
01922 assert(m != NULL);
01923
01924 if (fsize < HEADER_SIZE) {
01925 av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
01926 return AVERROR_INVALIDDATA;
01927 }
01928 header = (AV_RB32(buf) & 0x000fffff) | s->syncword;
01929
01930 if (ff_mpa_check_header(header) < 0)
01931 break;
01932
01933 avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
01934
01935 if (ch + m->nb_channels > avctx->channels) {
01936 av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
01937 "channel count\n");
01938 return AVERROR_INVALIDDATA;
01939 }
01940 ch += m->nb_channels;
01941
01942 out_size += mp_decode_frame(m, outptr, buf, fsize);
01943 buf += fsize;
01944 len -= fsize;
01945
01946 if (s->frames > 1) {
01947 n = m->avctx->frame_size*m->nb_channels;
01948
01949 bp = out_samples + s->coff[fr];
01950 if (m->nb_channels == 1) {
01951 for (j = 0; j < n; j++) {
01952 *bp = s->decoded_buf[j];
01953 bp += avctx->channels;
01954 }
01955 } else {
01956 for (j = 0; j < n; j++) {
01957 bp[0] = s->decoded_buf[j++];
01958 bp[1] = s->decoded_buf[j];
01959 bp += avctx->channels;
01960 }
01961 }
01962 }
01963 avctx->bit_rate += m->bit_rate;
01964 }
01965
01966
01967 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
01968
01969 s->frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
01970 *got_frame_ptr = 1;
01971 *(AVFrame *)data = *s->frame;
01972
01973 return buf_size;
01974 }
01975 #endif
01976
01977 #if !CONFIG_FLOAT
01978 #if CONFIG_MP1_DECODER
01979 AVCodec ff_mp1_decoder = {
01980 .name = "mp1",
01981 .type = AVMEDIA_TYPE_AUDIO,
01982 .id = CODEC_ID_MP1,
01983 .priv_data_size = sizeof(MPADecodeContext),
01984 .init = decode_init,
01985 .decode = decode_frame,
01986 #if FF_API_PARSE_FRAME
01987 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
01988 #else
01989 .capabilities = CODEC_CAP_DR1,
01990 #endif
01991 .flush = flush,
01992 .long_name = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
01993 };
01994 #endif
01995 #if CONFIG_MP2_DECODER
01996 AVCodec ff_mp2_decoder = {
01997 .name = "mp2",
01998 .type = AVMEDIA_TYPE_AUDIO,
01999 .id = CODEC_ID_MP2,
02000 .priv_data_size = sizeof(MPADecodeContext),
02001 .init = decode_init,
02002 .decode = decode_frame,
02003 #if FF_API_PARSE_FRAME
02004 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02005 #else
02006 .capabilities = CODEC_CAP_DR1,
02007 #endif
02008 .flush = flush,
02009 .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
02010 };
02011 #endif
02012 #if CONFIG_MP3_DECODER
02013 AVCodec ff_mp3_decoder = {
02014 .name = "mp3",
02015 .type = AVMEDIA_TYPE_AUDIO,
02016 .id = CODEC_ID_MP3,
02017 .priv_data_size = sizeof(MPADecodeContext),
02018 .init = decode_init,
02019 .decode = decode_frame,
02020 #if FF_API_PARSE_FRAME
02021 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02022 #else
02023 .capabilities = CODEC_CAP_DR1,
02024 #endif
02025 .flush = flush,
02026 .long_name = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
02027 };
02028 #endif
02029 #if CONFIG_MP3ADU_DECODER
02030 AVCodec ff_mp3adu_decoder = {
02031 .name = "mp3adu",
02032 .type = AVMEDIA_TYPE_AUDIO,
02033 .id = CODEC_ID_MP3ADU,
02034 .priv_data_size = sizeof(MPADecodeContext),
02035 .init = decode_init,
02036 .decode = decode_frame_adu,
02037 #if FF_API_PARSE_FRAME
02038 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02039 #else
02040 .capabilities = CODEC_CAP_DR1,
02041 #endif
02042 .flush = flush,
02043 .long_name = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
02044 };
02045 #endif
02046 #if CONFIG_MP3ON4_DECODER
02047 AVCodec ff_mp3on4_decoder = {
02048 .name = "mp3on4",
02049 .type = AVMEDIA_TYPE_AUDIO,
02050 .id = CODEC_ID_MP3ON4,
02051 .priv_data_size = sizeof(MP3On4DecodeContext),
02052 .init = decode_init_mp3on4,
02053 .close = decode_close_mp3on4,
02054 .decode = decode_frame_mp3on4,
02055 .capabilities = CODEC_CAP_DR1,
02056 .flush = flush_mp3on4,
02057 .long_name = NULL_IF_CONFIG_SMALL("MP3onMP4"),
02058 };
02059 #endif
02060 #endif